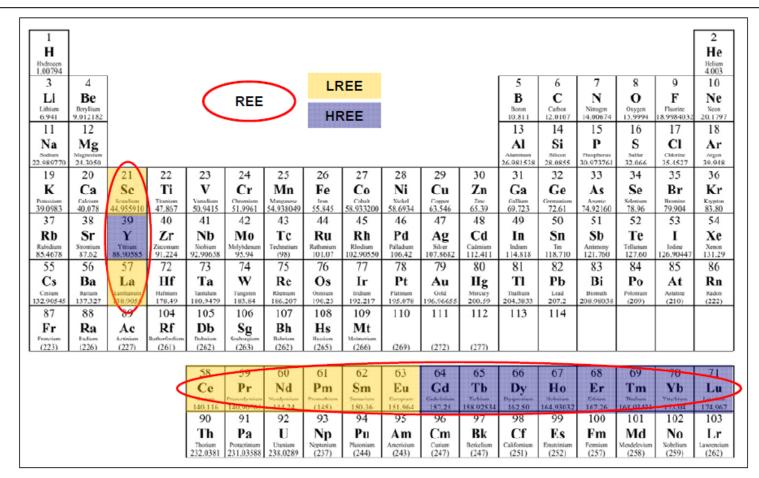


Rare Earths - a Bottleneck for future Wind Turbine Technologies?

Dr. Matthias Buchert Oeko-Institut e.V., Germany

WIND TURBINE SUPPLY CHAIN & LOGISTICS

Berlin, 29th August 2011



Rare Earth Elements

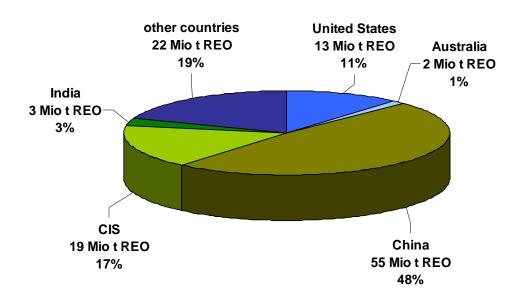
<u>~~~</u>

2

LREE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), and scandium (Sc)

HREE: yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) as HREE

Global production and reserves

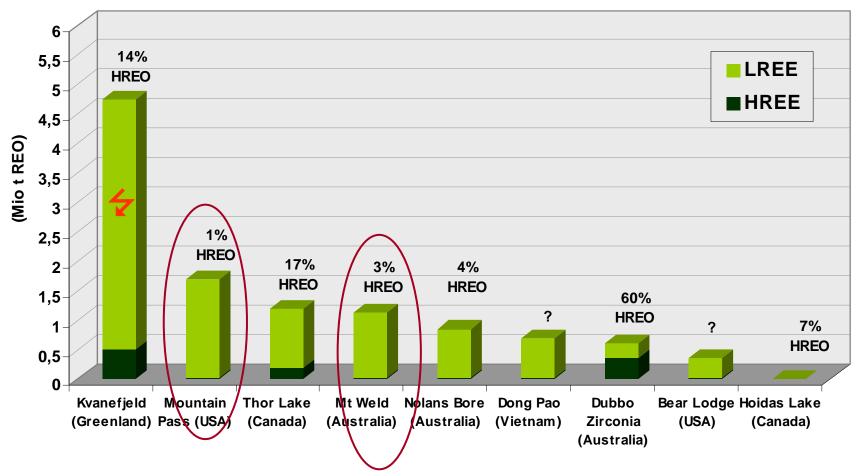

- Global production in 2010: 134 000 t
- Reserves according to USGS: 110 000 000 t (factor 820)

(reserve which can be economically extracted)

Word Mine production in 2010 (USGS 2011)

	Country	t REO	Share
(China	130 000	97,3%
	Brazil	550	0,4%
	India	2 700	2,0%
	Malaysia	350	0,3%
	World Total *	133 600	100,0%

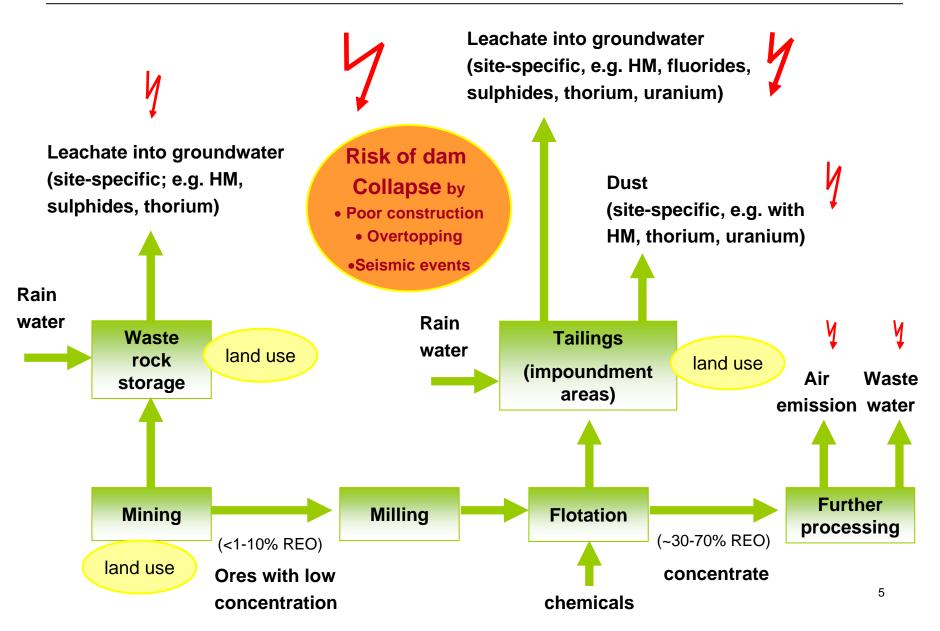
Rare earth reserves by countries (USGS 2011)


www.oeko.

Reserves of HREE and LREE

(according to the JORC-code)

www.oeko.d



4

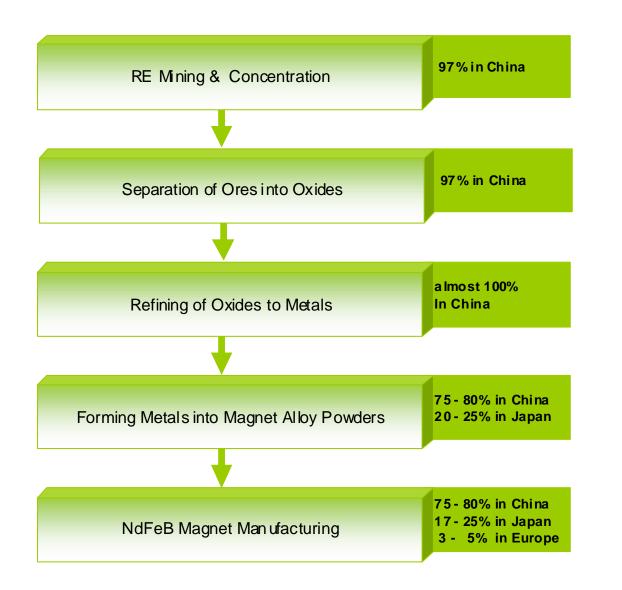
Risks of REE-Mining without Environmental Protection Systems

WWW.Oekc

Mining in China

- Batou Obo Mine the largest Rare Earth Mine
 - Main product: iron; side product: LREE
 - environmental burden: radioactive dusts, lung cancer, groundwater contamination
- Ion adsorption deposits in Southern China
 - High contents of HREE
 - In-situ leaching, hydro-geologically not controllable

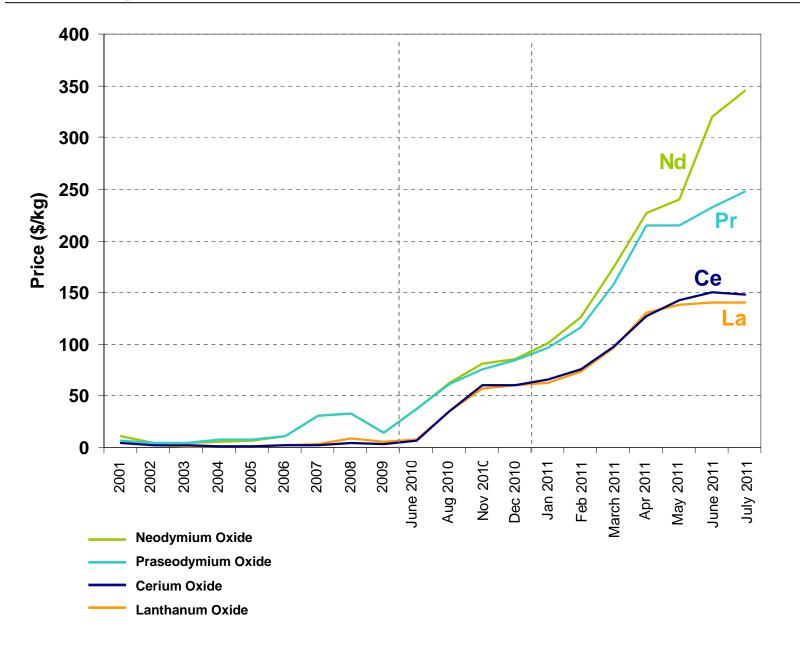
Numerous small illegal mines


- Estimation of around of 20 000 t REO which were illegally mined and exported
- Probably, most of these mines have no environmental technologies at all.
- Plans of the Chinese government

www.oeko.o

- Closing of small illegal mines. Concentration and consolidation of REE economy
- Installation of environmental technologies for mining and processing

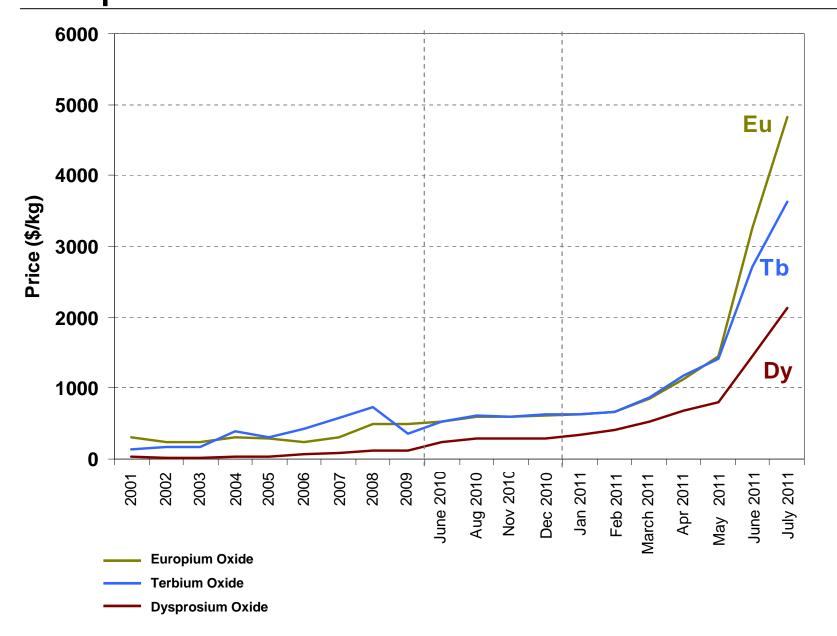
Global Nd magnet production



World NdFeBmagnet (Nd magnet) production: at least 60 000 t magnet material in 2010

Development of Prices I

- "cheap" rare earth elements

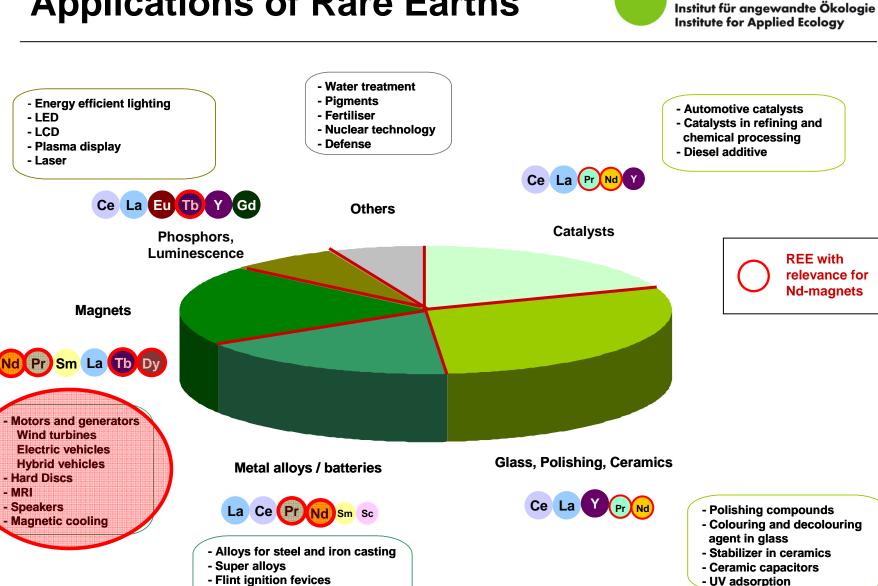

www.oeko.de

8

Development of Prices II

- "expensive" rare earth elements

Demand-Supply Balance 2014


Company	IMCOA/Kingsnorth	LYNAS
Source	Kingsnorth 2010,	Lynas 2010a
	figures in () from IMCOA, cited in Oakdene Hollins 2010	
	t REO	t REO
Lanthanum	-3 000 bis + 7 000	-13.700
Cerium	+15 000 bis + 25 000	7 500
Terbium	-100 bis + 100	-290
Dysprosium	-500 bis + 100	-1.100
Yttrium	-5 000 bis +3 000	-1.200
Praseodymium	(2 100)	-7 000
Neodymium	(-1 900)	-14 200
Samarium	(2 610)	2 300
Europium	(10)	-110
Gadolinium	(700)	900
Erbium	(60)	n.d.
Ho-Tm-Yb-Lu	(1 100)	n.d.

10

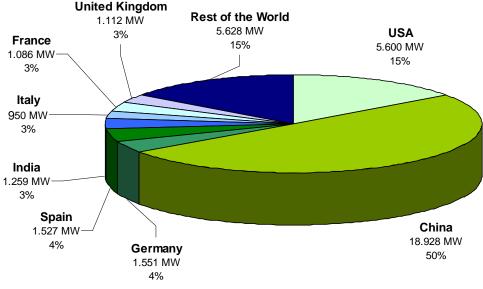
Applications of Rare Earths

- NiMH-battery - Fuel cell - H₂-storage

- Light weight construction

www.oeko.de

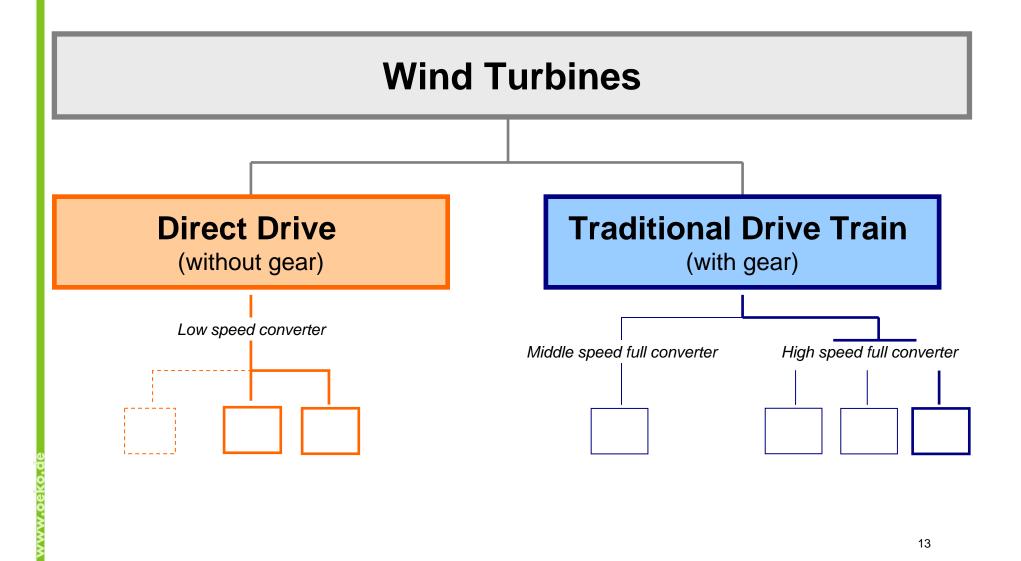
- MRI


Öko-Institut e.V.

 Neodymium magnets in generators (about 9% of new installations in 2010)

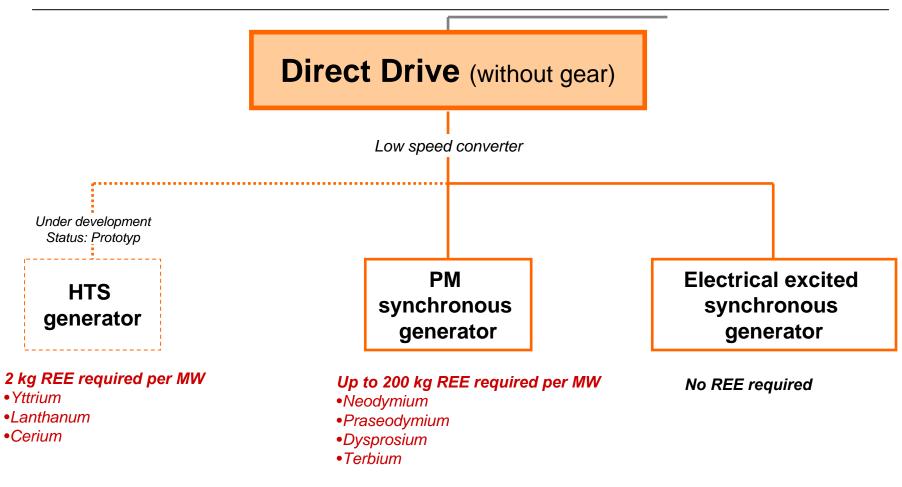
Global new installations

2010 (37 642 MW, +24%):

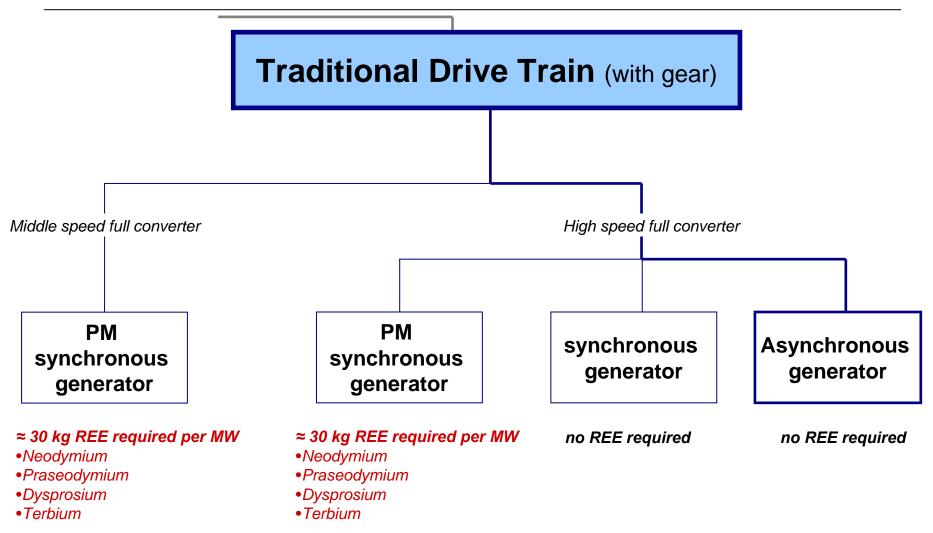


Source: World Wind Energy Report 2010

 Technologies without magnets (mainly gear drive technology) show still the largest market share, but here R & D on higher reliability (Offshore) is required



Wind turbines



www.oeko.

Wind turbines

Wind turbines

Weight of magnet material per MW: 500-600kg* (DD)

(Source: expert assessment of the project "OPTUM – Optimising the environmental benefit of electric vehicles – An integrated consideration of vehicle use and the electricity sector in Germany")

Weight of REE per MW:

160-200kg* (DD)

(Source: expert assessment of the project "OPTUM – Optimising the environmental benefit of electric vehicles – An integrated consideration of vehicle use and the electricity sector in Germany")

REE in permanent magnets:

Nd, Pr, Dy, Tb

Market share DD technology:

about 18%

- Market share DD PMSG technology: about 9%
- Notice: PM demand for fast running PMSG is about 100kg per MW

www.oeko.

PMSG = Permanent magnet synchronous generator

Announced advantages of Direct Drive technology

- No gearbox
- Higher efficiency
- Higher reliability
- Reduced maintenance
- Offshore suitable (lighter) / large wind power plants possible

- Wind energy (installed capacity) continues to grow strongly, especially in China
- Hugh Chinese players develop and boost the PMtechnology forward: large growth rates
- Also renowned European and US companies offer large new models of wind power plants based on Nd-magnettechnology
- Development towards larger wind power plants (capacity); Onshore / Offshore

Scenarios for REE demand for Wind power plants

	Conservative scenario		Ambitious scenario
204.0	9%	Market share DD PMG 2010 of new installations	9%
2010	4 GW/a	GW DD PMG 2010 of new installations	4 GW/a
0045	15%	Market share DD PMG 2015 of new installations	25%
2015	12 GW/a	GW DD PMG 2015 of new installations	20 GW/a
	15%	Market share DD PMG 2020 of new installations	40%
2020	45 GW/a	GW DD PMG 2020 of new installations	121 GW/a

DD PMG: Direct Drive with permanent magnet generator

Source: own estimation Öko-Institut; in 2020: 302 GW new installation, 1 470 GW accumulated installed capacity

REE demand according the scenarios

	Conservative scenario		Ambitious scenario
2010	638 t	Sum REE to 2010*	638 t
	402 t	thereof Neodymium	402 t
	96 t	thereof Dysprosium	96 t
2015	2 196 t	Sum REE to 2015*	3 661 t
	1 382 t	thereof Neodymium	2 304 t
	329 t	thereof Dysprosium	549 t
2020	8 155 t	Sum REE to 2020*	21 747 t
	5 132 t	thereof Neodymium	13 687 t
	1 222 t	thereof Dysprosium	3 259 t

Even in the conservative scenario the REE demand rises by 1 278% until 2020 and Dy demand in 2020 is 62% of the global production 2010.

Production of Nd_2O_3 in 2010: 25 000 t (Source: own estimation Öko-Institut)

Production of Dy₂O₃ in 2010: 1 980 t (Source: BGR 2011, Commodity Top News Nr 36)

* The rest is mainly Praseodymium and to a less degree Terbium

Wind turbine for the future?

- New HTS-technology (High Temperature Superconductor) under research and development
- Higher capacity feasible (up to 20 MW)
- Light weight, reliable, compact wind turbine nacelle design
- Prototype phase by Seatitan powered by AMSC
- 2 kg of rare earths per MW are required (Yttrium, Lanthanum, Cerium) (Source: BINE Informationsdienst)

- What will be the growth rate for PM-Technology? (market share, total volume)
- What would be the "break even point" in price terms of REE: Which price level would be the "killer" for the PM wind turbines?
- Could the HTS technology be competitive in the future?

- So far unknown: relatively new
- A future recycling of the large magnets in the sector wind energy seems to be very attractive: development of a recycling infrastructure (dismantling, refining, etc) is necessary.
- End of life recycling rates currently < 1% for REE</p>
- Now research efforts in Nd magnet recycling from other application sectors (consumer electronic, evehicles) are started.

Future recycling of Nd-magnets from wind turbines will be a decisive contribution for a positive balance of the entire life cycle

Background information

- The expected supply shortages and the current high prices provide for the first time the chance to initiate **REE-recycling in Europe.**
- In the past prices were too low for an economical recycling.
- Environmental impacts of the mining played no role in public discussions.
- The currently high publicity of this topic revealed the environmental damage caused by Chinese mines.
- **Build-up of a recycling scheme should start now: it takes** a minimum of 3 – 5 years for implementation 24

- Secondary REE potential arise.
- Lower dependency on foreign material supply.
- Building up of know-how on rare earth processing.
- No radioactive wastes in processing.
- Environmental benefits concerning air emissions. groundwater protection, acidification, eutrophication and climate protection.

25

Developing a recycling scheme

www.oeko.de

Recent news about rare earths

New publication by the German BGR (Federal Institute for Geosciences and Natural Resources) about heavy rare earth elements:

- Confirmed the critical situation for many of the heavy rare earth elements
- Terbium-Oxide demand in 2010 exceeds supply in 2010 and production forecast 2015
- Forecast 2015: production of Yttrium-, Samarium-, Europium-, Terbium-, Dysprosium-Oxide will decrease in China compared to 2010
- Additional mines (Dubbo, Pitinga, Others) with small contribution
- Estimated 10% recycling contribution in 2015 as optimistic assumption
 - - ambitious goal for a quite short period

www.oeko.

For the wind industry (and for other sectors) Dysprosium is the most critical REE and the biggest challenge!

Conclusions

- The supply situation for REE remains critical!
- Concerning Nd magnets especially Dysprosium supply will be the most important challenge in the future!
- Increasing REE demand from other sectors (e-mobility etc.) has to be taken into account!
- HTS technology could be an option to reduce REE demand; but today a statement is not possible!
- Recycling of Nd magnets will be an important contribution for overall REE supply in the future!

Thank you for your attention!

www.oeko.de

www.resourcefever.org